Let $G$ be the set of all matrices of the form
\begin{equation} \begin{pmatrix} 1&a\\0&1\\ \end{pmatrix}\end{equation}with $a\in \mathbf{Z}$ and matrix multiplication as the binary operation.Prove that $G$ is an abelian group isomorphic to $\mathbf{Z}$.
Proof:
\begin{equation} \begin{pmatrix} 1&a_1\\0&1\\ \end{pmatrix}\begin{pmatrix} 1&a_2\\0&1\\ \end{pmatrix}=\begin{pmatrix} 1&a_2+a_1\\0&1\\ \end{pmatrix}\end{equation}Done.